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Abstract. In this work, we model extreme waves that occur due to Mach reflection through the intersection of two obliquely

incident solitary waves. For a given range of incident angles and amplitudes, the Mach stem wave grows linearly in length

and amplitude, reaching up to four times the amplitude of the incident waves. A variational approach is used to derive the

bidirectional Benney-Luke equations, an asymptotic equivalent of the three-dimensional potential-flow equations modelling

water waves. This nonlinear and dispersive model has the advantage of allowing wave propagation in two horizontal directions,5

which is not the case with the unidirectional Kadomtsev-Petviashvili (KP) equation used in most previous studies. A variational

Galerkin finite element method is applied to solve the system numerically in Firedrake with a second-order Stormer-Verlet

temporal integration scheme in order to obtain stable simulations that conserve the overall mass and energy of the system.

Using this approach, we are able to get close to the fourfold amplitude amplification predicted by Miles.

1 Introduction10

Offshore structures such as wind turbines, ships and platforms are designed to resist loads and stresses applied by winds,

currents and water waves. These three factors can cause damage or destroy these structures when their effect is underestimated.

Designers and engineers must take into account the effect of not only each of these phenomena separately but also their

interaction, which can increase their adverse effects. In this work, we focus on the impact of extreme waves created from

the propagation of an obliquely incident solitary wave along the side of a ship (a wave-structure interaction), or its impact15

with another identical obliquely incident wave (a wave-wave interaction). These two cases are mathematically equivalent since

reflection at a rigid wall (represented here by the ship’s side) is modelled through the boundary condition of no normal flow

at the wall, which is equivalent to the intersection of two identical waves travelling in opposite directions, in which case a

virtual wall is formed. The study of extreme, freak or rogue waves resulting from reflection at a wall or interaction of waves

has spawned different theories in the last 50 years, some of which are now reviewed.20

The objective of the present work is to apply a theory first introduced in Miles (1977a, b) and based on experiments from

Perroud (1957), where he described analytically the behaviour of an incident solitary wave interacting with a wall. For a specific

range of angle of incidence ϕi and scaled amplitude ai of the wave, the reflection of the soliton may result in three wave fronts:

the incident and reflected waves, as well as a Mach stem wave propagating along the wall with an increasing length (see Fig. 1).
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This theory holds in the case of small-but-finite wave’s amplitude, shallow-but-finite water depth, and weak nonlinearity,

that is

ϕ2
i �O(ε), ai =O(ε), for any ε�O(1), (1)

and is based on an interaction parameter, first defined as

κ=
ϕi√
3ai

, (2)5

that enables one to predict the amplitude and direction of propagation of each wave front. The most important observation is

the transition at κ= 1 from a regular reflection (κ≥ 1) to a Mach reflection (κ < 1), which has led to the following definition

of the stem-wave amplification:

αw =





4
1 +
√

1−κ−2
, for κ≥ 1,

(1 +κ)2, for κ < 1,
(3)

so that αw = aw/ai is the quotient of the stem wave and incident wave amplitudes. Equation (3) shows that at the transition10

point where κ= 1 the stem wave may grow up to four times the amplitude of the incident wave, leading to extreme loading on

offshore structures. The aim of the present study is to develop a (numerical) model that can accurately simulate the evolution

of the stem wave so that the distance and direction of propagation required to reach the fourfold amplitude can be estimated. A

challenging aspect is that it takes a long time and large distance of propagation before the stem wave has reached it maximum

amplitude, which was a limit in previous experimental and numerical studies. Kodama et al. (2009) extended Miles’ theory to15

the Kadomtsev-Petviashvili (KP) limit, in which the assumptions are

a0

H0
� ε,

(
H0

λ0

)2

� ε, tan2ϕi� ε, ε�O(1), (4)

where H0, a0 and λ0 are the water depth, the wave amplitude and wavelength respectively. While the KP–limit still considers

shallow-but-finite depth and small-but-finite amplitudes, the main difference with Miles’ theory concerns the condition on

the angle ϕi. Yeh et al. (2010) explained that, contrary to Miles’ theory, wherein the soliton propagates in one-direction only20

(the KdV–limit), the KP–limit assumes a quasi-two dimensional approximation, and therefore the condition tan2ϕi�O(ε)

cannot be simplified to ϕ2
i �O(ε) as in Miles’ assumptions. The quasi-two dimensional KP soliton is not solution of the KdV

equation but it can be transformed to an asymptotic KdV soliton via some manipulations detailed in Yeh et al. (2010). However,

the width of the obtained KdV soliton is proportional to
√

aKP
cos2ϕi

, (5)25

with aKP the scaled amplitude of the initial KP soliton, and therefore depends on the angle ϕi. This is physically unrealistic

since the KdV soliton should have the same shape whatever its direction of propagation. For this reason, Yeh et al. (2010)

brought a "high-order correction" to the solution, setting the amplitude of the KdV soliton to be

aKdV =
aKP

cos2ϕi
, (6)
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so that its width depends on its amplitude aKdV , but not on any angle. Taking this into account, they slightly modified the

definition (2) of the interaction parameter κ to

κ=
tanϕi

cosϕi
√

3ai
, (7)

where ai = aKdV /H0 is the scaled amplitude of the incident wave, leading to what we will hereafter identify as the "modified-

Miles’ theory" for the expected stem wave amplification:5

αw =





4
1 +
√

1−κ−2
, for κ≥ 1,

(1 +κ)2, for κ < 1,
with κ=

tanϕi
cosϕi

√
3ai

. (3-7)

Using this modified interaction parameter in Eq. (3-7), they found much better agreement between previous numerical simu-

lations (Funakoshi, 1980; Tanaka, 1993) and modified-Miles’ theory. Moreover, Kodama et al. (2009) showed that the stem

wave resulting from the interaction of two solitary waves with small incident angles is an exact solution of the KP equation.

Solving this KP equation, they could describe the exact solution depending on the angle of incidence and the amplitude of10

the initial waves, and validate their theory with numerical simulations (Kodama et al., 2009; Li et al., 2011). Both the ampli-

tude and length of the stem wave indeed followed their predictions in the case of regular and Mach reflection. The numerical

scheme could not simulate the highest amplitudes that Miles predicts for κ≈ 1. Recently, Ablowitz and Curtis (2013) studied

Mach reflection for the Benney-Luke approximation, showing that, in that case, modified-Miles’ theory applies asymptotically,

leading to amplifications of up to 3.9.15

The purpose of the present work is to derive and apply a stable numerical scheme able to estimate the solution over a long

distance of propagation, in order to model high-amplitude waves and to confirm the transition from regular to Mach reflection

happening for κ≈ 1. We develop a model similar to the one of Benney and Luke (1964), which is an asymptotic approximation

of the potential-flow equations for small-amplitude and long waves. Whilst it has the advantage of conserving both the nonlinear

and dispersive properties of the waves (essential to the modelling of a freak wave, for instance), it does not require a mesh20

moving vertically with the free surface since the model is reduced to the horizontal plane. Pego and Quintero (1999) derived

these modified Benney-Luke equations and Bokhove and Kalogirou (2016) recently used them to simulate a soliton splash

resulting from a wave running in a restricted channel. Their simulations were in reasonable good agreement with experiments,

which confirms that the Benney-Luke approximation is an accurate model of water waves. The variational technique used in

the present approach enables to express the equations as a Hamiltonian system on which robust time integrators can be applied25

(Gagarina et al., 2016). The space and time Galerkin finite element method used to discretise the present model ensures the

overall conservation of mass, energy and momentum, which are essential in the high-amplitude and long-distance propagating

waves studied here.

The remainder of this paper is organised as follows: the modified Benney-Luke type model is derived from the variational

principle for an inviscid and incompressible fluid (Luke, 1967) in the potential flow approximation, using the small-amplitude30

and small-dispersion scaling of Pego and Quintero (1999). In order to apply modified-Miles’ theory and verify our numerical

results against Kodama’s exact solution, the KP limit is obtained from the Benney-Luke approximation, leading to a new vari-

ational principle for KP. A careful scaling is then defined to obtain an asymptotic soliton solution of our present model, based
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on the exact solution of the KP equation from Kodama et al. (2009). The corresponding interaction parameter is consequently

derived, leading to another version of modified-Miles’ theory (3-7), later used to compare our numerical simulations with re-

spect to Miles’ expectations. The present approaches are necessary to determine how to impose the line-solitons on the wave

makers to generate a fourfold amplified wave in the middle of a wave basin and measure its impact on offshore structures. The5

finite element method is then used to discretise the equations in space together with the second-order Störmer-Verlet temporal

scheme that ensures stable simulations. Results are finally discussed and compared to the expectations.

2 Water-wave model

2.1 Introduction

Our water-wave model is derived from a variational approach that ensures conservation of mass, momentum and energy. In10

a basic sea state with extreme waves, these conservation properties are essential given the different length scales involved.

Starting from Luke’s variational principle for an inviscid fluid with a free surface (Luke, 1967), a model similar to the one

derived by Benney and Luke (1964) for small-amplitude and long waves is obtained. The (numerical) method developed by

Bokhove and Kalogirou (2016) is used to derive the relevant variational principle for our Benney-Luke model. This asymptotic

model conserves the non-linear and dispersive properties of the sea waves, which enables comparison with the Kadomtsev-15

Petviashvili’s (KP) model for which the modified Miles’ theory Eq. (3-7) applies.

2.2 From Luke’s variational principle to Benney-Luke

Water-wave equations are often adequately described by the potential-flow approximation. In the absence of vorticity, the fluid

velocity u = (ux,uy,uz) can be expressed as the gradient of the so-called potential φ(x,y,z), such that u =∇φ. The deviation

from the surface at restH0 is defined by η(x,y, t) so that the total depth h(x,y, t) can be expressed as h(x,y, t) =H0+η(x,y, t)20

(cf. Fig. 2). We consider a flat sea bed lying at z = 0, with vertical walls at ∂Ωb, where Ωb is the horizontal plane of the bed

coordinates Ωb = {0≤ x≤ Lx,0≤ y ≤ Ly}. Luke (1967) described an inviscid and incompressible fluid with a free surface

in the potential approximation through the following variational principle:

T∫

0

∫

Ωb

H0+η(x,y,t)∫

0

[
∂tφ+

1
2
|∇bφ|2 +

1
2

(∂zφ)2 + g(z−H0)

]
dz dxdydt, (8)

where g is the acceleration of gravity. The subscript b denotes the horizontal plane of the bed coordinates such that ∇b =25

(∂x,∂y)T is the horizontal gradient. The velocity at the walls and sea bed are assumed to be zero, that is nb · ∇bφ= 0 on

∂Ωb, with nb the outward horizontal normal, and ∂zφ= 0 at z = 0. The boundary conditions at the free surface z = h and the
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equations of motion in the domain Ω are obtained from Eq. (8) as

∇2
bφ+ ∂zzφ= 0 in Ω, (9a)

∂tη+∇φ · ∇η− ∂zφ= 0 at z = h, (9b)5

∂tφ+
1
2
|∇bφ|2 +

1
2

(∂zφ)2 + gη = 0 at z = h, (9c)

nb · ∇bφ= 0 on ∂Ωb, (9d)

∂zφ= 0 at z = 0. (9e)

The amplitude parameter ε= a/H0� 1, with a the amplitude of the waves, and the small dispersion parameter µ= (H0/λ0)2�
1, with λ0 the horizontal wave length, have been introduced by Pego and Quintero (1999) to scale Eq. (8). The scaled variational10

principle is

0 = δ

T∫

0

∫

Ωb

1+εη∫

0

[
ε∂t̂φ+

ε2

2
|∇bφ|2 +

1
2
ε2

µ
(∂ẑφ)2

]
dẑ+

1
2
ε2η2 dx̂dŷ dt̂, (10)

where

x̂=
√
µ

H0
x, ŷ =

√
µ

H0
y, ẑ =

1
H0

z, t̂=
√
gH0µ

H0
t, η̂ =

1
εH0

η, φ̂=
√
µ

εH0

√
εH0

φ. (11)

This scaling focusses on small-amplitude long waves.15

To derive the Benney-Luke model, the potential flow φ is expanded in terms of the sea-bed potential φ(x,y,0, t) = Φ(x,y, t)

and the dispersion parameter µ, as in Bokhove and Kalogirou (2016):

φ(x,y,z, t) = Φ(x,y, t) +µΦ1(x,y,z, t) +µ2Φ2(x,y,z, t) + · · · . (12)

Combining this expansion with the system of equations (9) and retaining terms up to second order, Eq. (12) becomes (see

Bokhove and Kalogirou (2016) for details)20

φ= Φ− µ

2
z2∆Φ +

µ2

24
z2∆2Φ +O(µ3). (13)

Substituting Eq. (13) into the variational principle (10), one gets the variational principle under the Benney-Luke approximation

0 = δ

T∫

0

∫

Ωb

[
η∂tΦ +

µ

2
∇η · ∂t∇Φ +

1
2

(1 + εη)|∇Φ|2 +
µ

3
(∆Φ)2 +

1
2
η2

]
dxdydt. (14)

Arbitrary variations in both Φ and η together with boundary conditions n ·∇Φ = 0 and n ·∆∇Φ = 0 at ∂Ωb with n the normal25

pointing outward, lead to the Benney-Luke equations

δη : ∂tΦ−
µ

2
∂t∆Φ +

ε

2
|∇Φ|2 + η = 0, (15a)

δΦ : ∂tη−
µ

2
∂t∆η+∇ · ((1 + εη)∇Φ)− 2

3
µ∆2Φ = 0. (15b)
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These equations will be solved numerically as explained in Sec. 4. However, to test our Benney-Luke model on modified Miles’

theory (3-7), it must first be compared to the KP theory for which Kodama et al. (2009) have shown that modified Miles’ theory

holds.

2.3 From Benney-Luke to Kadomtsev-Petviashvili5

The Kadomtsev-Petviashvili equation for small-amplitude solitons can be derived from the Benney-Luke variational principle

(14) and Eqs. (15) through the transformations

X =
√
ε

µ
(x− t), Y =

ε√
µ
y, τ = ε

√
ε

µ
t, Ψ =

√
ε

µ
Φ, η = η. (16)

Substituting scalings (16) into Eq. (15a), η can be expressed from Ψ as

η = ΨX − εΨτ −
ε

2
ΨXXX −

ε

2
(ΨX)2− ε2

2
(Ψy)2 +

ε2

2
ΨτXX −

ε3

2
ΨXY Y +

ε3

2
ΨτY Y . (17)10

Substituting Eq. (16) into the transformed variational principle (14) yields

0 = δ

T∫

0

∫

Ωb

[
η (εΨτ −ΨX) +

ε

2
ηX (εΨτX −ΨXX) +

ε2

2
ηY (εΨτY −ΨXY )

+
1
2

(1 + εη)
(

(ΨX)2 + ε(ΨY )2
)

+
ε

3

(
(ΨXX)2 + ε2 (ΨY Y )2

)
+

1
2
η2

]
dX dY dτ. (18)

Subsequent elimination of η using Eq. (17) and truncation to O(ε2) gives the variational principle for KP in terms of η ≈ΨX :

0 =εδ

T∫

0

∫

Ωb

[
ΨXΨτ +

1
2

(ΨX)3− 1
6

(ΨXX)2 +
1
2

(ΨY )2

]
dX dY dτ (19a)15

=ε

T∫

0

∫

Ωb

δΨ
[
−2ΨXτ − 3ΨXΨXX −

1
3

ΨXXXX −ΨY Y

]
dX dY dτ. (19b)

Note that we consider an infinite plane, with Ψ vanishing at the boundaries |X,Y | →∞, such that the boundary terms arising

from the integrations by part vanish in Eq. (19b). Since δΨ is arbitrary, the variational principle (19) yields the following

equation for the leading-order scaled potential Ψ:

2ΨXτ + 3ΨXΨXX +
1
3

ΨXXXX + ΨY Y = 0. (20)20

From Eq. (17), at leading order in O(ε), η can be expressed as η = ΨX and, therefore, taking the partial derivative of Eq. (20)

with respect to X leads to the KP equation for η:
[
2ητ + 3ηηX +

1
3
ηXXX

]

X

+ ηY Y = 0. (21)

6
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The solution of the KP equation (21) is found by substituting the following Ansatz, the form inspired by Yeh et al. (2010)

Eq. (9), into (21):

η(X,Y,τ) =Asech2 [B (X +Y tanϕ−Cτ)] , (22)

where ϕ is the angle of incidence, A is the amplitude of the soliton, and B and C ar coefficients to be determined via direct

substitution. The KP soliton is then found to be

η(X,Y,τ) =Asech2

[√
3
4
A(X +Y tanϕ−Cτ)

]
, (23)5

with C =
1
2
A+

1
2

tan2ϕ, B =
√

3A/4 and A the prescribed amplitude. Using Eq. (17) at leading order, i.e. η = ΨX , the

solution for Ψ thus becomes

Ψ(X,Y,τ) =

√
4
3
A

[
tanh

(√3
4
A(X +Y tanϕ−Cτ)

)
+ 1
]
. (24)

3 Comparison with modified Miles’ theory and Kodama’s exact solution

3.1 Introduction to Kodama’s exact solution10

Kodama et al. (2009) have studied the reflection pattern for a "symmetric V-shape initial waves consisting of two semi-infinite

line solitons with the same amplitude", in a system of coordinates (X̃, Ỹ, τ̃) related to our system of coordinates (16) (X,Y,τ)

via

X̃ =
(

3√
2

)1/3

X, Ỹ =
(

3√
2

)2/3

Y, η̃ =
1
3

(
3√
2

)4/3

η, τ̃ =
√

2τ. (25)

They solved the KP equation15

[4η̃τ̃ + 6η̃η̃X̃ + η̃X̃X̃X̃ ]
X̃

+ 3η̃Ỹ Ỹ = 0, (26)

for which the surface deviation solution η̃ is given by

η̃ = Ãsech2



√
Ã

2

(
X̃ + Ỹ tan ϕ̃− C̃τ̃

)

 , (27)

where Ã is the amplitude of the soliton, ϕ̃ is the angle of incidence at the wall, and C̃ is a constant defined as C̃ ≡ 1
2
Ã+

3
4

tan2 ϕ̃. They showed that in this specific case, the transition from regular to Mach reflection occurs when20

tan ϕ̃=
√

2Ã. (28)

Moreover, Kodama et al. (2009) defined exactly the incident, reflected and stem solitons resulting from the interaction as a

O-type soliton in the case where tan ϕ̃ >
√

2Ã, and a (3142)-type soliton in the case where tan ϕ̃ <
√

2Ã. The O–type soliton

7
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consists of two line-solitons travelling in the x–direction, each having a specific amplitude and angle with respect to the y–

axis (see Fig. 3). The (3142)–type soliton consists of two other line–solitons, also travelling in the x–direction with their own25

amplitudes and angles with respect to the y–axis, but this soliton also has the property to be non-stationary, i.e. that while it

propagates along the x–axis, a new line–soliton is progressively created and grows parallel to the y–axis at the intersection

of the two initial line–solitons. In the case of both O-type and (3142)–type solitons, one can indeed associate one of the

line–soliton to the incident solitary wave presented in the introduction, the second line–soliton to the reflected wave (with a

different amplitude and angle), and the intersection of the two line–solitons as the stem wave, growing in length only when

the angle of the incident wave is smaller than the critical angle (28). These two solitons are represented in Fig. 3, obtained5

from Kodama et al. (2009). A comparison between these theoretical solitons and those obtained numerically from the V–shape

initial soliton showed very good agreement, confirming that the incident, reflected and stem waves described by Miles are

indeed asymptotically equivalent to the O–type and (3412)–type solitons, depending on the initial angles. In the case of a

symmetric initial pattern, that is for two initial line–solitons of equal amplitude and angle of incidence, Kodama et al. (2009)

gave the expression of the maximal amplitude of the intersection wave, as10

amax =





1
2

(tan ϕ̃+
√

2Ã)2 for tan ϕ̃ <
√

2Ã,

4Ã

(1 +

√
1− 2Ã

tan2 ϕ̃
)

for tan ϕ̃≥
√

2Ã. (29)

Since the condition tan ϕ̃=
√

2Ã is equivalent to Miles’ condition κ= 1, we can define the interaction parameter correspond-

ing to the KP equation (26) as

κ̃=
tan ϕ̃√

2Ã
. (30)

Substitution of the interaction parameter (30) into the amplification expectations (29) indeed yields Miles’ predictions (3) for15

αw = amax/Ã.

3.2 Application to the present Benney-Luke model

In Sec. 2.3, the Benney-Luke model was reduced to the KP equation (21). This equation for the surface deviation η is slightly

different from the one used by Kodama et al. (2009), and introduced in Eq. (26). In order to compare our numerical solutions

to Kodama et al. (2009)’s results (29)–(30), our KP equation (21) is (re)scaled using the coefficients introduced in Eq. (25),20

which yields Eq. (26) used by Kodama et al. (2009). Since we know that the KP soliton defined in Eq. (27) is a solution of the

KP equation (26), we may transform it back to the initial variables (X,Y,τ,η) introduced in Eq. (16) to get the exact solution

of our KP equation (21):

η = 3
(

3√
2

)−4/3

Ãsech2

[√
Ã

2

((
3√
2

)1/3

X − C̃
√

2τ +
(

3√
2

)2/3

Y tan ϕ̃

)]
. (31)

8
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Hence, the relations between our coefficients A, ϕ and C and those appearing in Kodama’s solution (27) Ã, ϕ̃ and C̃ are given

by

A= 3
(

3√
2

)−4/3

Ã, C =
(

4
3

)1/3

C̃, tanϕ=
(

3√
2

)1/3

tan ϕ̃, (32)

using which the solution (31) becomes

η =Asech2

[√
3
4
A(X +Y tanϕ−Cτ)

]
, (23)5

with C =
1
2
A+

1
2

tan2ϕ, which is indeed the solution (23) derived in Sec. 2.3. Therefore, applying scaling (32) to the critical

condition (28) yields the critical condition for Eq. (21) and solution (23) as

tanϕ=
√

3A. (33)

When we transform solution (23) for η back to the original Benney-Luke approximation (15) used in our simulations (using

scaling (16)), the asymptotic solutions for η and Ψ become10

η(x,y, t) =Asech2

[√
3ε
4µ
A

(
x−x0 +

√
ε(y− y0)tanϕ+ (t− t0)(1−Cε)

)]
, (34a)

Φ(x,y, t) =

√
4µ
3ε
A

[
tanh

(√
3ε
4µ
A
(
x−x0 +

√
ε(y− y0)tanϕ+ (t− t0)(1−Cε)

))
+ 1

]
, (34b)

where the soliton has been localised around the position (x0,y0) at time t= t0. Finally, by setting

ai =A, tanϕi =
√
εtanϕ, and Ĉ =

1
2
ai +

1
2ε

tan2ϕi, (35)

the solutions (34) of the Benney-Luke equations can be rewritten as15

η(x,y, t) = ai sech2

[√
3ε
4µ
ai

(
x−x0 + (y− y0)tanϕi + (t− t0)(1− Ĉε)

)]
, (36a)

Φ(x,y, t) =

√
4µ
3ε
ai

[
tanh

(√
3ε
4µ
ai

(
x−x0 + (y− y0)tanϕi + (t− t0)

(
1− Ĉε

)))
+ 1

]
. (36b)

This solution is used as initial condition at time t= 0 in the simulations. Condition (33) defines the following relation between

ϕi, ai and ε in our Benney-Luke scaling, for Eq. (15):

tanϕi =
√

3εai. (37)20

This condition is equivalent to Miles’ condition κ= 1 and therefore we can define our Benney-Luke interaction parameter as

κBL =
tanϕi√

3εai
. (38)
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Note however that taking into account the remark from Kodama (2010) about the quasi two-dimensionality of the KP limit, as

explained in introduction, the interaction parameter defined in Eq. (38) must be corrected to

κBL =
tanϕi

cosϕi
√

3εai
(39)25

in order to satisfy Miles’ predictions (3). One can see from the potential-flow equations (9) for the Benney-Luke approximation,

that the small amplitude parameter ε is defined as ε= a/h0. Therefore, in the specific case where ai = 1 and ε= aKdV /h0,

the interaction parameter (7) is recovered. The diagram in Fig. 4 summarizes the equations and solutions derived thus far, in

each scaling. In the next section, we explain how the Benney-Luke system of equations are discretized in both space and time

in order to be solved numerically.5

4 Numerical implementation

As a first step in the computational solution, the Benney-Luke model needs to be discretized in space and time, on a meshed

domain. This section explains the methods used to discretize the domain and the equations.

4.1 Space discretization: Finite Element Method (FEM)

A continuous Galerkin finite element method is used to discretize the solutions in space. The variables η and φ are approximated10

by the finite element expansion

ηh(x,y, t) = ηi(t)ϕi(x,y),

Φh(x,y, t) = Φj(t)ϕj(x,y), (40)

where the subscript h denotes the discretized form of the solutions with basis functions ϕj(x,y), and i, j ∈ [1,N ] with 2N

unknowns. The Einstein notation for the implicit summation of repeated indices is used. Substituting expansions (40) into the15

variational principle (14) yields the space–discretized variational principle

0 = δ

T∫

0

∫

Ωb

[
ϕjηjϕiΦ̇i +

µ

2
ηjΦ̇i∇ϕj · ∇ϕi +

1
2

(1 + εϕjηj)ΦiΦl∇ϕi · ∇ϕl +
µ

3
ΦiΦj∆ϕi∆ϕj +

1
2
ϕiϕjηiηj

]
dΩb dt, (41)

with Φ̇i the time derivative of Φi. Its variation with temporal end-point conditions δΦi(0) = δΦi(T ) = 0 is

0 =

T∫

0

δΦi
∫

Ωb

[
− η̇jϕjϕi−

µ

2
η̇j∇ϕj · ∇ϕi + (1 + εηjϕj)Φl∇ϕi∇ϕl +

2
3
µΦj∆ϕj∆ϕi

]
dΩb

+δηi
∫

Ωb

[
ϕiϕjΦ̇j +

µ

2
∇ϕi∇ϕjΦ̇j +

ε

2
ϕiΦjΦl∇ϕj∇ϕl + ηjϕiϕj

]
dΩb dt. (42)20

To avoid the second-order derivative in the fourth term, the auxiliary variable

q(x,y, t) =−2
3

∆Φ(x,y, t) (43)
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is introduced, so that, in the variational principle (14), the term
µ

3
(∆Φ)2 can be written as

µ

3
(∆Φ)2 = µ

(
2
3

(∆Φ)2− 1
3

(∆Φ)2

)

= µ

(
−2

3
∇∆Φ · ∇Φ− 3

4
(
2
3

∆Φ)2

)

= µ

(
∇q · ∇Φ− 3

4
q2

)
, (44)

which leads to the variational principle5

0 = δ

T∫

0

∫

Ωb

[
η∂tΦ +

µ

2
∇η · ∂t∇Φ +

1
2

(1 + εη)|∇Φ|2 +µ

(
∇q · ∇Φ− 3

4
q2

)
+

1
2
η2

]
dΩb dt. (45)

In keeping with Eq. (40), second-order Galerkin expansion for q is now expressed as

qh(x,y, t) = qi(t)ϕi(x,y). (46)

Substitution of the expansions (40) and (46) into the variational principle (45) yields the discretized variational principle. Its

variations with δΦj(0) = δΦj(T ) = 0 lead to the weak formulations in matrix form as in Bokhove and Kalogirou (2016).10

Rather than using this matrix form directly, we only accommodate the spatial discretization using Firedrake (Rathgeber et al.,

2015; Balay et al., 2015, 1997; Dalcin et al., 2011; Hendrickson and Leland, 1995), "an automated system for the portable

solution of partial differential equations using the finite element method (FEM)". This automated system uses the finite element

method to solve partial differential equations, and requires specification of the following:

– the domain in which the equations are solved, and the kind of mesh to use (e.g., quadilaterals, the spatial dimension,15

etc.);

– the order and type of polynomials used;

– the type of expansion for the unknowns (e.g., continuous Galerkin, Lagrange polynomials etc.);

– the function space of the unknowns and test functions; and, finally;

– the weak formulations discretized in time.20

In the present case, the domain is defined as a horizontal channel ending in an oblique wall, and quadrilaterals are used for its

discretization (see details in Sec. 5.1.2). Here, we chose to use quadratic polynomials to expand Φ, q and η. The resulting weak

11
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formulations implemented in Firedrake in terms of Φh, qh and ηh are the following:

δΦh : 0 =

T∫

0

∫

Ωb

[
− ∂tηhδΦh−

µ

2
∇∂tηh · ∇δΦh + (1 + εηh)∇δΦh · ∇Φh−µ∇qh · ∇δΦh

]
dΩb dt, (47a)

δqh : 0 =

T∫

0

∫

Ωb

µ

[
3
2
qhδqh−∇δqh · ∇Φh

]
dΩb dt, (47b)

δηh : 0 =

T∫

0

∫

Ωb

[
δηh∂tΦh +

µ

2
∇δηh · ∇∂tΦh + ηhδηh +

ε

2
δηh∇Φh · ∇Φh

]
dΩb dt. (47c)

The forms given in Eq. (47) are convenient since they highlight the unknowns Φh, qh and ηh as well as the test function δΦh,

δqh and δηh. The final step is to discretize the equations in time, with a second-order Stormer-Verlet scheme, as explained in5

the next section.

4.2 Time discretization: second-order Stormer-Verlet scheme

The space discretized form of the variational principle (14) can be written in the Hamiltonian form

0 = δ

T∫

0

[
MijΦi

dηj
dt
−H(Φi,ηj)

]
dt, (48)

where10

Mij =
∫

Ωb

[
ϕiϕj +

µ

2
∇ϕi · ∇ϕj

]
dxdy, (49)

and the Hamiltonian

H(φi,ηj) =
∫

Ωb

[
1
2

(1 + εηjϕj)ΦiΦl∇ϕi · ∇ϕl +
µ

3
ΦiΦl∆ϕi ·∆ϕl +

1
2
ηjηlϕjϕl

]
dΩb. (50)

Gagarina et al. (2016) have shown that, for a generic Hamiltonian system in the form

δL(P,Q,t) = δ

T∫

0

(
P
dQ

dt
−H(P,Q)

)
dt, (51)15

robust time integrators conserving the overall mass and energy can be applied. To derive these time schemes, P and Q are dis-

cretized on each time interval [tn, tn+1] as the approximated momentum P τ and coordinateQτ , and expanded with coefficients

P i and Qi and linear continuous basis functions ϕi and ψi:

P τ =Qiϕi(t), Qτ =Qiψi(t). (52)
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The linear basis functions ϕi and ψi are continuous within each time interval, but admit discontinuities at the interface between20

two time slots. Therefore, to discretize Eq. (51), the notion of jumps [[.]] and average {{.}}βα for a time dependent function

d(t) must be introduced (Gagarina et al., 2016):

[[d]]|tn = dn,−− dn,+, and {{d}}βα|tn = αdn,−+βdn,+. (53)

The coefficients α and β are real numbers defined such that α+β = 1 and α,β ≥ 0. The notation dn,± denotes the left and

right traces of d(t) at time tn, that is

dn,± = lim
ε→0

d(tn± ε). (54)

Discretization of the variational principle Eq. (51) then yields (Gagarina et al., 2016)

δLτ (P τ ,Qτ , t) = δ

[
N−1∑

n=0

tn+1∫

tn

(
P τ

dQτ

dt
−H(Qτ ,P τ )

)
dt−

N−1∑

n=−1

[[Qτ ]]{{P τ}}βα|tn+1

]
, (55)5

where N is the number of finite time intervals [tn, tn+1] that divide the time domain [0,T ]. Gagarina et al. (2016) showed that to

obain a second-order Stormer-Verlet scheme, P and Q must be discretized with a trapezoidal and mid-point rules respectively,

that is:

P τ =
tn+1− t

∆t
Pn,+ +

t− tn
∆t

Pn+1,−, (56)

Qτ =
2(t− tn)

∆t
Qn+1/2 +

tn + tn+1− 2t
∆t

Qn, (57)10

Substituting Eq. (56-57) into the discretized variational principle (55) yields (Gagarina et al., 2016)

δLτ (P τ ,Qτ , t) = δ

[
N−1∑

n=0

((
Pn,+ +Pn+1,−)(Qn+1/2−Qn,+

)
− ∆t

2

(
H(Pn,+,Qn+1/2) +H(Pn+1,−,Qn+1/2)

))

−
N−1∑

n=−1

(
2Qn+1/2−Qn,+−Qn+1,+

)(
αPn+1,−+βPn+1,+

)
]
. (58)

Its variations with end-point conditions δ(2Q−1/2−Q−1,+) := δQ0,− = 0 and δP 0,− = δQN,+ = δPN,+ = 0, and conditions

[[P ]]tn = 0 andQn = αQn,++βQn,+ with α ∈ [0.5,1] and β = 1−α (Gagarina et al., 2016), yields the following second-order15

Stormer-Verlet scheme:

Pn+1/2 = Pn− ∆t
2
∂H(Pn+1/2,Qn)

∂Qn
, (59a)

Qn+1 = Qn +
∆t
2

(
∂H(Pn+1/2,Qn)

∂Pn+1/2
+
∂H(Pn+1/2,Qn+1)

∂Pn+1/2

)
, (59b)

Pn+1 = Pn+1/2− ∆t
2
∂H(Pn+1/2,Qn+1)

∂Qn+1
, (59c)
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with the stability condition20

|ω∆t| ≤ 2, (60)

with ω the waves’ frequency. Setting the vectors P = {Φi} and Q= {ηj}, the variational principle (48) for Benney-Luke

equations can therefore be discretized as in (59), leading to Eq. (A1) in Appendix A. Since the space discetization is performed

internally within Firedrake, the weak formulations (A1) can be implemented with the full form of the variables Φh and ηh and

test functions δΦh and δηh yielding Eq. (A2), in Appendix A. Substituting the auxiliary variable q defined in Eq. (43), the

system of equations (A2) corresponds to the time discretization of Eq. (47), namely

0 =
∫

Ωb

(
Φn+1/2
h −Φnh

)
δηh +

µ

2
∇δηh · ∇

(
Φn+1/2
h −Φnh

)
+

∆t
2

[
ηnhδηh +

ε

2
δηh∇Φn+1/2

h · ∇Φn+1/2
h

]
dΩb, (61a)

0 =
∫

Ωb

(
q
n+1/2
h δqh−

2
3
∇δqh · ∇Φn+1/2

h

)
dΩb (61b)5

0 =
∫

Ωb

(
ηn+1
h − ηnh

)
δΦh +

µ

2
∇δΦh · ∇

(
ηn+1
h − ηnh

)
− ∆t

2

[(
(1 + εηnh)∇δΦh · ∇Φn+1/2

h −µ∇qn+1/2
h · ∇δΦh

)

+
(

(1 + εηn+1
h )∇δΦh · ∇Φn+1/2

h −µ∇qn+1/2
h · ∇δΦh

)]
dΩb, (61c)

0 =
∫

Ωb

(
Φn+1
h −Φn+1/2

h

)
δηh +

µ

2
∇δηh · ∇

(
Φn+1
h −Φn+1/2

h

)
+

∆t
2

[
ηn+1
h δηh +

ε

2
δηh∇Φn+1/2

h · ∇Φn+1/2
h

]
dΩb. (61d)

Timesteps (61a), (61b) and (61c) are implicit, while step (61d) is explicit. Although the equations are nonlinear, one can see

that steps (61b), (61c) and (61d) are linear with respect to the unknowns, qn+1/2
h , ηn+1

h and Φn+1
h respectively. Therefore, linear10

solvers are used to solve these three weak formulations, which reduces the running time by assembling the Jacobian matrix only

once instead of computing it at each time step. The implementation of these linear and non-linear solvers is straightforward in

Firedrake, since functions that solve weak formulations for specific unknown and test functions already exist (Rathgeber et al.,

2015; Balay et al., 1997, 2015; Hendrickson and Leland, 1995; Dalcin et al., 2011).

5 Numerical results15

In this section, the domain is specified and discretized in order to evaluate Φ and η numerically. The numerical evolution of the

stem wave’s amplitude is compared to the expectations from our modified-Miles theory Eq. (3) and Eq. (39). Finally, the angle

of propagation of the reflected and stem waves are measured and compared to the expectations.

5.1 Definition of the domain

5.1.1 Orientation of the channel20

The interaction of two solitary waves can be modelled using either two obliquely intersecting channels, with incident solitons

propagating along each channel (see scheme (a) in Fig. 5), or from the reflection of a soliton at a wall with the no-normal
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flow condition at the wall (see scheme (b) in Fig. 5). While the first case (a) is more relevant to the theme of this paper, we

choose to model the case (b) to reduce the size of the domain by half and thus to reduce the simulation time. Since the cases

(a) and (b) are mathematically equivalent, the results and conclusions obtained with half of the domain will also be valid for25

the intersection of two oblique channels.

The domain is described by the length of the wall Lw, the length of the channel Lc, and the angle of incidence ϕi. The

channel needs to be long enough, compared to the wavelength of the incident wave, in order that the boundaries are far enough

from the initial soliton to be considered as being at infinity. From Eq. (34), the width of the initial soliton depends on
√

3ε/4µ,

and since µ is set to 0.02 for every simulation, the width of the soliton varies with ε, from 2.5 (when ε= 0.20) to 4 (when

ε= 0.12). We set Lc = 5 to leave enough space between the extremities of the soliton and the boundary of the channel for

every case. To allow the stem wave to grow and reach its maximal amplitude, the wall also needs to be long compared to the5

wavelength. This constraint was a limit in previous numerical and experimental studies (Tanaka, 1993; Li et al., 2011), since

it requires robust and stable numerical schemes and large wave basins. We set the wall length to 200≤ Lw ≤ 600 depending

on the value of ε, that is, more than 100 times the incident wave width. When considering half of the domain as represented

in Fig. 5b, we can chose to set the wall in the x- or y-direction, in which case the initial soliton must propagate in an oblique

direction and is therefore equivalent to a KP soliton, as defined in Eq. (36), or we can let the initial soliton propagate in the x-10

or y-direction, in which case the wall is oblique and the expression of the KP-type soliton (36) can be simplified to a KdV-type

soliton propagating in the x- (or y-) direction, as

η(x,y, t) = ai sech2

[√
3ε
4µ
ai

(
x−x0 + (t− t0)

(
1− Ĉε

))]
, (62a)

Φ(x,y, t) =

√
4µ
3ε
ai

[
tanh

(√ 3ε
4µ
ai

(
x−x0 + (t− t0)

(
1− Ĉε

)))
+ 1

]
. (62b)

The behaviour of the incident and stem waves in the case of an oblique incident soliton (36) and a soliton propagating in15

the x-direction only (62) are compared in Fig. 6. The initial solitons have amplitude ai = 1.0, small amplitude parameter

ε= 0.14 and small dispersion parameter µ= 0.02. The angle between the direction of propagation of the solitons and the wall

is ϕi = π/6 in both cases. The dashed lines represent the evolution of the interpolated amplitude of incident solitons with time.

While the initial amplitude was ai = 1.0 in both cases, we observe that both amplitudes first increase before decreasing to an

asymptotic value, slightly smaller than 1.0 (ai = 0.93). This behaviour is not expected for solitons since they should keep a20

permanent shape. However, we solve here the Benney-Luke equations for which the KP soliton is only an asymptotic (and

not exact) solution. We recall that the transformation (16) from the Benney-Luke model to the KP theory is not exact since

it requires a trunctation to O(ε2). In the numerical simulations represented in Fig. 6, ε= 0.14 so the condition ε�O(1) is

respected only asymptotically which might be responsible for this variation of amplitude. One can however see from Fig. 6 that

the incident KP and KdV–type solitons (36) and (62) converge, and that both do so to the same surface deviation, ai = 0.93.25

This same limit shows that the approximation error from Benney-Luke to the KP soliton is asymptotically the same as from

Benney-Luke to KdV. The stem waves (solid lines in Fig. 6) resulting from the interaction of the KP-type (36) and KdV-type

(62) initial solitons with the wall evolve in exactly the same way which confirms that the KP-type and KdV-type initial solitons

15
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(36) and (62) give the same results. The small variations in the curves are due to the mesh resolution which is not fine enough

to secure a regular amplitude. However, this approximation is sufficiently accurate to provide an estimate of the asymptotic

amplitude of the stem wave. Since we have demonstrated that the two types of initial solitons (36) and (62) evolve similarly

to give the same results, subsequent simulations will be conducted using only a unidirectional soliton, as defined by Eq. (62),

which is a solution of both the KP and KdV equations.

5.1.2 Mesh5

In order to evaluate Φ and η at an arbitrary time, the domain is discretised using quadrilaterals. This is done using the mesh

generator Gmsh (Geuzaine and Remacle, 2009). Since the domain is large, we define a heterogeneous mesh within which areas

of higher refinement along the wall, where the solution needs to be more accurate. Moreover, the end of the domain is truncated

with a blunt wall instead of the sharp angle, to avoid boundary quadrilaterals having internal angles that are too acute. The final

domain comprising different mesh refinements is represented in Fig. 7, in which the insets show the aforementioned refined10

mesh and right-hand boundary quadrilateral elements.

5.2 Amplification of the stem wave

The numerical amplification of the stem wave is compared with the predictions of modified-Miles’ theory applied to our

Benney-Luke model (3) and (39), namely

15

αw =





4
1 +
√

1−κ−2
, for κ≥ 1,

(1 +κ)2, for κ < 1,
(3)

with κ=
tanϕi

cosϕi
√

3εai
. (39)

The interaction parameter defined in Eq. (39) depends on three parameters: the scaled amplitude of the incident soliton ai,

its angle of incidence ϕi, and the small amplitude parameter ε. From Miles’ theory, a change in these parameters will modify

the behaviour of the reflected and stem waves. Figure 8 shows a comparison between predictions (3) and (39) and numerical20

simulations for the maximal amplification of the stem wave. The amplitude and angle of incidence of the initial soliton are

the same for each of the simulations, with values ai = 1.0 for the amplitude and ϕi = 30◦ for the angle of incidence. Only

the small-amplitude parameter ε changes in the different cases, taking values from 0.12 to 0.20, which leads to different

interaction parameters and thus different evolutions of the stem and reflected waves. This is an alternative choice than in the

work of Ablowitz and Curtis (2013) where for a specific ε, they run simulations with varying amplitude and angle of incidence.25

This enabled them to show that the small-amplitude parameter ε has only a weak impact on the amplification of the stem wave

for κ < 1 but limits the amplification with a decrease ofO(ε) close to the resonant case κ= 1, leading for instance to a maximal

wave amplification of 3.9 when epsilon = 0.1. Despite this asymptotic limitation in the wave amplification, the purpose of the

present simulations is to model wave amplification in various sea state, with various depth of water and characteristic wave
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heights, and we do so by using different values of ε, since we recall that the small-amplitude parameter ε is the quotient30

between the characteristic wave height and the water depth. This will allow the industry to test waves’ impact on a wider range

of structures, since different structures are used in different sea states. Moreover, the incident wave amplitude varies slightly

when propagating along the basin. This change has a high impact on the predictions, since a small change of order O(10−2)

in the incident wave amplitude implies a change of order O(10−2) in the interaction parameter, which can lead to a prediction

variation of up to O(10−1) near the transition case κ≈ 1 since the expected amplification varies dramatically in this area. The

amplification aw/ai is also affected by a change in the incident amplitude ai. It is therefore necessary to use the accurate value

for the incident amplitude. To obtain Fig. 8, we defined the maximal amplification as follows: when the stem wave reaches5

its maximal amplitude awmax
, we measure the amplitude of the incident wave ai at the same x-position. This new incident

amplitude ai is used to adjust the interaction parameter, and to compute the amplification of the stem wave αw = awmax/ai.

The incident channel has a length Lc = 5 and the stem wall 200≤ Lw ≤ 600. The grid refinement is 0.25× 0.25 in the finest

area (e.g. at the wall), and 0.4× 1.5 elsewhere. The numerics follow the theoretical curve, but a slight difference between the

present results and those expected from modified-Miles is noticeable. As alluded to beforehand, we assume that this is due10

to the fact that the soliton used as an incident wave is an asymptotic but not exact solution of the Benney-Luke equations.

The scaling from Benney-Luke to KP is not exact but asymptotic, with a truncation at second order, which leads to a slight

difference in the final wave amplification. This observation agrees with the conclusions of Ablowitz and Curtis (2013) on

the asymptotic amplification of the stem wave in the case of the Benney-Luke model. The shift is probably also increased

by the mesh resolution that could be optimised to get a better estimate of the incident wave’s amplitude and limit the error15

caused by its approximation. New simulations with higher mesh resolution are expected to verify the current results. However,

the present Benney-Luke model still predicts very well the evolution of the stem wave amplitude, enabling it to reach up to

3.6 times the initial amplitude. The stem-wave maximal amplification is reached for κ= 0.9733, marginally smaller than the

κ= 1.0 predicted by Miles. While the model from Kodama et al. (2009) could predict perfectly the evolution of the stem wave

based on the KP equation, they were unable to reach more than 3.2 times the initial amplitude in their numerical simulations.20

5.3 Angle of the stem and reflected waves

Miles’s theory also predicts different directions of propagation of the stem and reflected waves in the cases of regular and Mach

reflections. While in the first case, characterised by κ≥ 1, the angle of the reflected wave ϕr is expected to be equal to the one

of the incident soliton ϕi, it should become larger than ϕi in the case of Mach reflection, i.e. when κ < 1:



ϕr = ϕi for κ≥ 1

ϕr > ϕi for κ < 1.
(63)25

Moreover, in the case of regular reflection, the stem wave is expected to propagate along the wall with a constant length, while

for Mach reflection, its length should increase linearly to make a positive angle ϕw with the wall:



ϕw = 0 for κ≥ 1

ϕw > 0 for κ < 1.
(64)
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Predictions (63) and (64) are now being checked numerically.

5.3.1 Regular reflection

Figure 9 shows numerical results and expectations for the specific case where κ= 1.12≥ 1. The wall makes an angle of 30◦

with the direction of propagation of the initial solitary wave, hence ϕi equals 30◦. On the bottom-right plot of Fig. 9, one can5

measure an angle of 60◦ between the reflected and stem waves which means that the angle ϕr between the reflected wave and

the line perpendicular to the wall is equal to 30◦, that is, equal to ϕi. This observation holds at any time and therefore the

expectations (63) for the reflected waves are satisfied in the case of regular reflection. The stem wave propagates along the wall

without increasing in length, and therefore no angle can be measured between the stem wave and the wall: ϕw = 0, as predicted

in (64) for regular reflection. These results together with Fig. 8 for the amplification of the stem wave confirm modified-Miles’10

theory in the case κ≥ 1, for both the reflected and stem waves.

5.3.2 Mach reflection

Figure 10 shows numerical results and schematic expectations for the propagation of the reflected and stem wave for κ=

0.58< 1. In the bottom right plot, one can first measure the angle between the incident and reflected waves, as represented in

the top right scheme, to check that ϕr is larger than ϕi. The total angle ϕr +ϕi measures 70◦, with the initial incident angle15

set to ϕi = 30◦. Therefore, ϕr measures 40◦ and is indeed larger than ϕi, which corresponds to the predictions. The top right

scheme of Fig. 10 also shows that the stem wave length should increase linearly to form an angle ϕw with the wall. In the

bottom right figure, a top view of the numerical results at different times from t= 0.28 to t= 1.12 highlights the increase

of the stem-wave’s length as it propagates along the wall. The dashed orange line connects the solutions, confirming that the

wavelength increases in a linear way.20

6 Conclusions and discussions

The present model Eq. (15) together with the new scaled interaction parameter (39) shows good agreement with the predictions

from Miles concerning the amplification of the stem wave and the angles of the reflected and stem waves. One can observe two

different regimes in the numerical results, with different behaviours of the waves in the case of Mach and regular reflections.

This confirms the conclusions obtained by Ablowitz and Curtis (2013) concerning the ability of the Benney-Luke model to25

predict reflection of obliquely incident solitary waves. Presently, our simulations do not allow determination of the exact value

of the interaction parameter at the transition from Mach to regular reflection, but currently the maximal amplification is reached

at κ= 0.9733, which is very close to the predicted maximal amplification at κ= 1.0. The maximal amplification obtained at

the moment is αw = 3.6 which is higher than the amplifications obtained with most previous models and experiments (Kodama

et al., 2009; Li et al., 2011; Tanaka, 1993; Funakoshi, 1980), but still slightly lower than the expected 3.9 amplification from30

Ablowitz and Curtis (2013). This agrees with the conclusion of Ablowitz and Curtis (2013) concerning the impact of ε on the

amplification near κ= 1. While he obtained the maximal amplification αw = 3.9 for ε= 0.10, our amplification αw = 3.6 is

18

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-58, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 4 October 2016
c© Author(s) 2016. CC-BY 3.0 License.



obtained for ε= 0.17, which is larger than 0.1 and thus leads to a larger difference with Miles’ prediction of αw ≈ 4. Moreover,

thanks to the robust scheme used to derive and discretise our equations, that ensures stable simulations over the large domain

despite the different length scales involved, our present model is the first model able to describe numerically the dynamic

development of the stem wave up to such high amplitudes. Previous studies (Kodama et al., 2009; Li et al., 2011; Tanaka,

1993; Funakoshi, 1980) could not attain such high amplifications because of numerical limitations. Ablowitz and Curtis (2013)

obtained the highest numerical amplification αw = 3.9 by considering the final state initialised immediately yet asymptotically5

using the KP two-line solution. This last approach gives an accurate understanding of the asymptotic maximal amplification of

the stem wave with the BL model, but does not describe the development of the stem wave along the wall. The description and

understanding of the wave propagation along the wall is however fundamental for application purposes. The present results,

although currently limited by the computational time, are therefore a necessary improvement for the application of obliquely

interacting solitary waves in maritime engineering. More advanced simulations should enable determination of the value of κ10

at the transition from Mach to regular reflection, and to reach higher amplification of the stem wave.

One can point out some limits to the current model. As already concluded in previous studies, the wave needs to propagate

over a long distance (relative to its wavelength) in order to reach its maximal amplitude. Consequently, the numerical domain

needs to be large, and the mesh fine enough to estimate the waves’ crests accurately. This numerical requirement increases the

computational time. One must therefore find a compromise between the accuracy of the simulations and the running time. This15

constraint is all the more important in that near the transition from Mach to regular reflection a slight change in the incident

wave’s amplitude modifies dramatically the interaction parameter and consequently the predictions of the stem and reflected

waves. One must therefore be careful when analysing the numerical results. For the same reason, simulations for κ≈ 1 and

large amplifications αw ≈ 4 are extremely difficult to obtain, since a slight change in the initial settings (ai, ε...) modifies

completely the behaviour of the resulting waves. Li et al. (2011) actually conjectured that the transition between Mach and20

regular reflection in the neighbourhood of κ= 1 might be gradual and not as abrupt as expected from Miles’ predictions (64).

Finally, one may wonder how likely this solitary waves’ reflection is to occur in an open ocean. Interaction of obliquely

incident waves on the wall of ships leads to an increasing wave amplitude near the side, sometimes reaching the deck. This

phenomenon is called ‘green water´, and has been studied experimentally and numerically by the Maritime Research Institute

Netherlands (MARIN) to limit the damage caused by the waves on the ships (Buchner et al., 2014). A comparison between25

our numerical simulations and experiments may be interesting to explore in the future. The present model can also be used to

predict the impact of extreme waves, such as freak or rogue waves, on structures. Indeed, when the stem wave reaches more

than twice the amplitude of the incident wave, it can then be viewed as a freak wave since it has similar properties in terms of

nonlinearity, dispersivity and high amplitude. Table 1 shows the distance needed by the stem wave to reach more than twice

the incident wave’s amplitude in different cases (depending on the value of ε). For each value of the small-amplitude parameter30

ε, the numerical distance Ln needed to reach at least twice the amplitude of the initial wave has been measured from the

simulations. Then, the definition of the small-amplitude parameter ε= a0/H0 and the choice of a sea state with characteristic

wave height a0 = 3m enables computation of the corresponding water depth H0. The real distance Lr needed by the wave

to propagate in this sea state up to twice the characteristic wave height can then be obtained from scaling (11), with formula
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Lr = Ln×H0/
√
µ. The value of the small-dispersion parameter µ is set to 0.02 as in the results section. Finally, the wavelength

λ0 can be obtained from the definition of the small-dispersion parameter µ= (H0/λ0)2. In a wave tank where waves can be

generated from different directions, one can define the angle of propagation and initial profile of two solitary waves from the

asymptotically exact solution Eq. (36) of our model Eqs (15), so that their interaction will lead to a stem wave. The evolution5

of the stem wave can be predicted from the present model, so an offshore structure such as a scaled ship or a wind turbine can

be placed at a position where the stem wave will reach more than twice the initial amplitude of the solitary waves. A scaling

of 1/10 from values in Table 1 to experiments leads to achievable incident waves’amplitudes and distance of propagation in

MARIN’s shallow water basin. By knowing the amplitude of the stem wave at a given position, one can estimate the impact of

the wave on structures and validate the predictions with such model tests. The model can thus help the industry to design safer10

offshore structures that can resist extreme waves’ impacts.

The present work can also be used as a starting point for the modelling of the interaction of three obliquely incident line-

solitons, which should lead to a ninefold-amplified resulting wave that can also be generated in wave tanks. 1

7 Data availability

The Firedrake implementation of our discretisation of the Benny-Luke equations is an example in Firedrake, www.firedrake.org15

(Bokhove and Kalogirou, 2016). In addition, the expanded program we used to do our simulation is freely available here.

Appendix A: Time-discretization of the present Benney-Luke model

The Störmer-Verlet scheme (59) is applied to the variational principle (48) for Benney-Luke, with P = {Φi} and Q= {ηi},
leading to:

0 =
∫

Ωb

(
Φn+1/2
i −Φni

)[
ϕiϕj +

µ

2
∇ϕi · ∇ϕj

]
+

∆t
2

[
ηnj ϕjϕl +

ε

2
ϕjΦ

n+1/2
i Φn+1/2

l ∇ϕi · ∇ϕl
]
dΩb, (A1a)

0 =
∫

Ωb

(
ηn+1
i − ηni

)[
ϕiϕj +

µ

2
∇ϕi · ∇ϕj

]
− ∆t

2

[(
(1 + εηnj ϕj)Φ

n+1/2
l ∇ϕi · ∇ϕl +

2
3
µΦn+1/2

l ∆ϕi ·∆ϕl
)

+
(

(1 + εηn+1
j ϕj)Φ

n+1/2
l ∇ϕi · ∇ϕl +

2
3
µΦn+1/2

l ∆ϕi ·∆ϕl
)]

dΩb, (A1b)

0 =
∫

Ωb

(
Φn+1
i −Φn+1

i

)[
ϕiϕj +

µ

2
∇ϕi · ∇ϕj

]
+

∆t
2

[
ηn+1
j ϕjϕl +

ε

2
ϕjΦ

n+1/2
i Φn+1/2

l ∇ϕi · ∇ϕl
]
dΩb. (A1c)

1O. Bokhove suggested this calculation to Prof. Y. Kodama, personal communication, who performed the calculation using the KP equation at the interna-

tional workshop "Rogue waves" held at the Max Planck Institute in 2011, Dresden, Germany.
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Since the space discetization is performed internally within Firedrake, the weak formulations (A1) can be implemented with

the full form of the variables Φh and ηh and test functions δΦh and δηh as

0 =
∫

Ωb

(
Φn+1/2
h −Φnh

)
δηh +

µ

2
∇δηh · ∇

(
Φn+1/2
h −Φnh

)
+

∆t
2

[
ηnhδηh +

ε

2
δηh∇Φn+1/2

h · ∇Φn+1/2
h

]
dΩb, (A2a)

0 =
∫

Ωb

(
ηn+1
h − ηnh

)
δΦh +

µ

2
∇δΦh · ∇

(
ηn+1
h − ηnh

)
− ∆t

2

[(
(1 + εηnh)∇δΦh · ∇Φn+1/2

h +
2
3
µ∆δΦh ·∆Φn+1/2

h

)
5

+
(

(1 + εηn+1
h )∇δΦh · ∇Φn+1/2

h +
2
3
µ∆δΦh ·∆Φn+1/2

h

)]
dΩb, (A2b)

0 =
∫

Ωb

(
Φn+1
h −Φn+1/2

h

)
δηh +

µ

2
∇δηh · ∇

(
Φn+1
h −Φn+1/2

h

)
+

∆t
2

[
ηn+1
h δηh +

ε

2
δηh∇Φn+1/2

h · ∇Φn+1/2
h

]
dxdy. (A2c)
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Figure 1. Top: top view of a channel containing an incident solitary wave propagating in the x−direction with amplitude ai. The side wall

is oblique and makes an angle ϕi with the x−direction. Bottom: top view of the reflection pattern when the incident wave impacts the wall.

The pattern is composed of three waves: 1) the incident wave, 2) a reflected wave of amplitude ar that forms an angle ϕr with the angle

perpendicular to the wall, and 3) a Mach stem wave propagating along the wall with amplitude aw and an angle ϕw with the wall.
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Figure 2. Three-dimensional water-wave domain with depth of rest H0. We aim to estimate the potential φ(x,y,z, t) and the free-surface

deviation η(x,y, t) from the rest depth.
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Figure 3. O–type and (3142)–type solitons as represented by Kodama et al. (2009). Top: evolution (from left to right) of the O-type soliton,

consisting of two line–solitons with different amplitudes and angles with respect to the y–axis. As it propagates, the shape of this soliton is

kept unchanged. Bottom: evolution (from left to right) of the (3142)–type soliton, consisting of two line–solitons travelling in the x–direction

with different angles and amplitudes. As the soliton propagates, a new line–soliton is created at the intersection of the two initial line–solitons,

leading to a stem wave. Figure obtained from Kodama et al. (2009).
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Figure 4. Link between the (scaling of the) three system of equations involved in the derivation of the exact solution and critical condition

for which Miles and Kodama’s predictions hold in the Benney-Luke approximation.
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Figure 5. Definition of the domain in the two cases described in the text: a) intersection of two channels, with two obliquely incident solitons

interacting at a virtual wall, and b) half of the domain with a soliton propagating in one channel and colliding with an oblique wall. This wall

is either in the x− or y−direction (in which case the soliton has a two-dimensional propagation of direction) or oblique, in which case the

incident soliton propagates in a one-dimensional direction (x or y).
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Figure 6. Results obtained for an initial amplitude ai = 1.0, and angle ϕi = π/6 rad. Blue: behaviour of the incident and stem wave when

the incident soliton propagates in an oblique direction; Red: behaviour of the incident and stem wave when the incident soliton propagates

in one direction.
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Figure 7. Discretised domain with quadrilaterals. The mesh is refined along the wall only, to reduce the computational time.
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Figure 8. Comparison between the expected amplification (solid line) from Miles (3) and our numerical results (symbols) for different values

of the interaction parameter κ, namely: κ≈ 1.1265 (ε= 0.12), κ≈ 1.0526 (ε= 0.14), κ≈ 1.0077 (ε= 0.15), κ≈ 0.9989 (ε= 0.16),

κ≈ 0.9733 (ε= 0.17), κ≈ 0.9345 (ε= 0.18), κ≈ 0.8692 (ε= 0.20).
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Figure 9. Numerical results and expectations for the surface deviation η at different times. Left: numerical evolution of the incident, reflected

and stem waves from different views. Right: top view of the expected (top) and numerical (bottom) reflections of the incident solitary wave

at different times. For t1 < t2, we expect the angle ϕr to be constant and equal to the incident angle ϕi.
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Figure 10. Numerical results and expected behaviour of the reflected and stem waves in the case of Mach reflection, that is κ < 1. Left:

numerical evolution of the incident, reflected and stem waves. Top right: top-view scheme of the expected evolution of the stem and reflected

waves at two different times t1 and t2 with t1 < t2. The stem wave should linearly grow in length, leading to an angle ϕw > 0 rad with the

wall. Bottom right: top view of the numerical results. The dashed orange line connects the stem wave lengths at different times, showing that

it indeed grows linearly.
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ε

0.12 0.14 0.15 0.16 0.17 0.18 0.20

Numerical distance Ln 5.8 5.5 5.5 7.8 7.7 8.0 8.0

Water depth H0 (m) 25.00 21.43 20.00 18.75 17.65 16.67 15.00

Real distance Lr (m) 1025 833 778 1028 965 940 846

Wave length λ0 (m) 176.78 151.52 141.42 132.58 124.78 117.85 106.07

Table 1. Prediction of the minimal distance needed by the stem wave to reach at least twice its initial amplitude in a sea state with charac-

teristic wave’s height a0 = 3 m. The dispersion parameter µ is set to 0.02 while the small-amplitude parameter ε varies from 0.12 to 0.20,

leading to different wave evolutions. The numerical distance needed to reach more than twice the incident wave’s ampitude is measured from

the numerical simulations. The corresponding water depth, real distance of propagation and wavelength are computed from the definition of

ε, µ, and scaling (11). These values are approximate.
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